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Euclidean Markov fields of higher integer spin I. Massive case 

S C Lim 
Department of Physics, National University of Malaysia, Kuala Lumpur, Malaysia 

Received 1 0 M a y  1976 

Abstract. The general Lagrangian approach of Takahashi and Umezawa is used for the 
construction of free massive spin-1 and spin-2 Euclidean Markov fields. It is shown that 
these fields can be put in the framework of Markov field theory along the lines of Nelson. 
An example of a Euclidean field which is Markovian but non-reflexive is also given. This 
field does not lead to  a Wightman theory in the Minkowski region. 

1. Introduction 

Euclidean quantum fields of arbitrary spin have been studied by Ozkaynak (1974) in the 
spirit of the Osterwalder and Schrader axioms (Osterwalder and Schrader 1973,1975). 
However, he has not discussed the Markov property or reflection property of these 
fields. Gross has constructed a Euclidean Proca field (Gross 1975), but his remark that 
such a field is non-Markovian is incorrect. A proof of the Markov property for a 
Euclidean Proca field was given by Yao (1975). A Euclidean massive spin-1 field in 
terms of a rank-two antisymmetric tensor has also been shown to be Markovian by Lim 
(1975). It is also possible to formulate a Euclidean vector meson field in covariant R, 
gauges, which is Markovian but non-reflexive and does not lead to a Wightman theory 
(Lim 1975). In this paper we shall show that there exists a general method of 
constructing Euclidean Markov fields for massive particles with spin S G 2. 

Nelson’s proof of the Markov property for Euclidean scalar field depends crucially 
on the fact that the inverse of the Euclidean propagator exists and is a local differential 
operator (Nelson 1973a7 b). This is closely related to the Lagrangian field theory 
expounded by Takahashi and Umezawa (Umezawa and Takahashi 1953, Takahashi 
1969). The main idea is as follows. A field of massive particles with higher spin, 
described by a tensor, has too many components to describe particles of a unique spin. 
Some of the lower spins enter with negative metrics in the Wightman functions, and 
have to be eliminated by imposing subsidiary conditions on the field. The method 
proposed by Takahashi and Umezawa is to express the field equation in the form of a 
single local differential matrix equation 

(1.1) 
such that it can be reduced to the Klein-Gordon equation and all the subsidiary 
conditions by a finite number of differentiations and algebraic operations. In other 
words there exists a differential operator d(8) called the Klein-Gordon divisor, which 
satisfies 

m 4  ( x  1 = 0 

d(d)A(a) = A(a) d(8) = (U + m 2 ) I .  

1731 
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Furthermore, there is a non-singular matrix 7 defined by 

c77 A@)]* = 77 N-8)  (1.3) 

so that the equation of motion (1 .1)  can be derived by variational method from the 
following local Lagrangian density 

9 = -4 * (~ )VJV~M ( x  1 (1.4) 

where the asterisk denotes Hermitian conjugate. 
The free propagator is just the matrix inverse of A(@, i.e. d(a)(U+m*)-’. The 

locality of h(a) ensures the Markov property of the corresponding Euclidean field. 
Thus, the Markov property is closely related to the possibility of finding a local 
Lagrangian density for the field. 

2. Eudidean massive spin-1 fields 

We shall study three models, namely the Euclidean Proca field, the antisymmetric 
rank-two tensor field and the vector meson field in covariant R, gauges. 

2.1. Euclidean Proca field 

The relativistic equation of motion for particles with mass m and spin equal to 1 is the 
Proca equation 

A p u ( a ) 4 ” ( ~ >  = 0 ( 2 . 1 ~ )  

where 

A,,(a)= -(O+m2)g,, +a,&,. (2 . lb )  

Here we have used the convention goo = + 1,  gij = -8, for i = 1,2,3.  The Klein-Gordon 
divisor is given by 

(2.2) d”” = - (g”” + m-2#a”) 

satisfying 

(2.3) 

(2.4) 

where ob) = (p2 + m2)1’2. The relativistic one-particle space A is defined as the 
completion of the inner product space whose elements are equivalence classes of 
elements of 9 ( R 4 )  =.9’(R4) X .9’(R4) X 9’(R4) X Y(R4), with equivalence defined with 
respect to the norm given by the inner product 

Since the support of the Fourier transform of W”” is confined to the hyperboloid sheet 
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2 . 2 .  p = m , po  3 0; and 2,d,$f = 0 (or 2,d, W,” = 0) each equivalence class may then be 
represented by an element f(x) E Y3(k); with this representation, A4 has the following 
norm: 

(2.6) 1 1 f 1 1 ~  = llf112/2 + m -211div flI:l/z < 00 

where 
3 

div f = d,fi(x) 
i -  1 

and 11.. . 1 1 - 1 / 2  is the Sobolev norm defined by (lf(1-1/2(-A+m2)-”2.f~~~. The 
physical Hilbert space for the free Proca field is the Fock space $(A). 

Now the transition from the relativistic propagator to the Euclidean propagator is 
not as direct as that in the scalar case. The main difference lies in the fact that the 
Minkowski metric g,, appears in the propagator and no amount of analytic continua- 
tion is going to change the indefinite g,, into the definite Sij needed for a probabilistic 
interpretation. One can overcome this difficulty by re-introducing the ‘old fashioned’ 
four vector 4i(x), i = 1 ,2 ,3 ,4 ,  with c$~(x) = i40(x). It is the Schwinger functions of this 
four vector field that are covariant under real Euclidean groups. Actually such a step is 
equivalent to the following matrix transformation 

4i (x) = Aip4” (x) (2.7) 

where 

Ai, = 1 i f i = p = 1 , 2 , 3 ,  

A40=i and Ai, = 0 otherwise. 

Therefore the two-point Schwinger function is given by 

Sij(~ - y )  =Ai,Aj,WC”’(x-y,i(xo-yo))= (Sij-m-2&dj)S(X - Y >  (2.8) 

where S(x - y)  is the two-point Schwinger function for the massive scalar field. Its 
Fourier transform has a local inverse ( p 2  + m2)Si, - m-’pipj, which ensures the Markov 
property for the Euclidean Proca field. 

The Euclidean one-particle space X can then be defined as the completion of the 
vector-valued real test-function space @(R4) with respect to the inner product 

where 
4 

div f = d i f i ( x )  
i - 1  

(2.9b) 

and 11. . is a X1 Sobolev norm. Gross (1975) has shown that X can be obtained by 
dilation of the semigroup e-hor, where ho is the Hamiltonian for a single free particle of 
mass m and spin 1. Our remarks show that this dilation is connected to analytic 
continuation, just as it is in Nelson’s theory of spin 0. 
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Euclidean Proca field @ is defined as the generalized random vector field indexed by 
X with mean zero and covariance E[@(f)@(g)]  = (f, g)%. The Euclidean invariance of 
the inner product in X allows the full Euclidean group ISO(4) on the underlying 
probability space (a, E, p )  of @ to be presented by measure-preserving automorph- 
isms of the U algebra Z. The translational subgroup acts ergodically on C if Z is a 
minimal U algebra. 

Q, does not satisfy the subsidiary conditions Zid,@, = 0. To see what happens to the 
subsidiary conditions we introduce the following definition. 

Definition 1. A Euclidean field is ultralocal if all its cumulants E d @ ( x l ) .  . . @(&)I, 
n = 2 , 3 ,  . . . , (i.e. truncated expectation values) are zero, unless all xl, . . . , x, are equal. 
If we assume that the first moment vanishes, then the Wightman field obtained from an 
ultralocal Euclidean field is zero. This is because, by definition, the Wightman functions 
are obtained by analytic continuation of the Euclidean Green functions evaluated at 
unequal points, at which points they vanish. The Euclidean Proca field does not satisfy 
EldicDi(x) = 0 even though its Wightman field 4p(x )  satisfies Z,d&”(x) = 0. However, 
X j & Q i ( x )  is ultralocal. Indeed 

(2.10) 

Then, the covariance function in x space is - ( A / m 2 ) s 4 ( x  - y )  leading to an ultralocal 
field. Quantum fields with this property are related to infinitely divisible group 
representation (Streater 1969, 1971). 

One can also show that the Euclidean Proca field satisfies the reflection property of 
Nelson, which can be generalized to arbitrary tensor fields as follows (Lim 1975, Yao 
1976). Let 7 be a representation of full Euclidean group ISO(4) on the underlying 
probability space (0, E, p )  such that 

(2.11) 

where a ~ 8 8 ~  and R ~ S 0 ( 4 )  and fa,R = f ( R - ’ ( x - U ) ) .  If ~ ( p )  is the reflection in the 
hyperplane x4 = 0 (denoted by ro), then 

(2.12) 

where f i ( x )  =f(x, -x4). 

Definition 2. The Euclidean tensor field cD,,.,,l,(f) is said to satisfy the reflection 
property if ~ ( p ) u  = U, where U c2Z2(a, Eo, p ) ,  Xo is the sub-u algebra generated by 

We can summarize the main results for Euclidean Proca fields in the following 
{ @ i ~ . . . i s ( f ) l f ~ ~ ~  s u p f c  TO)* 

theorems. 

Theorem 1 (Gross 1975). The time-zero Euclidean one-particle subspace Xo is natur- 
ally identical to the relativistic one-particle space A. 

Theorem 2 (Gross 1975). If J, is an isometric embedding of $(A) into Z2(Cl, X, p )  with 
image 2Z2(R, Z,, p) ,  then the free Hamiltonian Ho in $(A) is related to .I, by the 
Feynman-Kac formula: 

e-lt-31Ho - - J,*J,. 
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Theorem 3 (Yuo 1975). The Euclidean Proca field is Markovian. 

Theorem 4 (Lim 1975, Yuo 1976). The Euclidean Proca field satisfies the reflection 
property. 

2.2. Euclidean spin - 1 massive tensor field 

From the group-theoretical point of view, there is an alternative way of describing 
massive spin- 1 particles, namely, by an antisymmetric rank-two tensor (CIF’ (x) satisfying 
the following equations: 

(O+ m2)4’”(x) = 0 (2.13) 

I ( I ~ ’ y ( x ) + + u ~ ( x ) = o  (2.14) 
and 

a,@”’(x) = 0 (2.15) 

Using the method of Takahashi and Umezawa it is possible to combine these equations 
into one single matrix equation: 

A w U w @ M p b )  = 0, ( 2 . 1 6 ~ )  
with 

~ ~ ~ ~ ( 6 )  = % ~ + m ’ ) ( g , , g ,  -gwgwp) - i (gppauau  -gwawa , )  

+ g ,  a, a, - g ,  a, a, - h 2(g,,guu + g,g, ) (2.166) 

A # 0 is any real constant. This equation can be derived by the variation principle from 
the following local Lagrangian density: 

(2.17) 

The relativistic Green function is d’”(a)(O + m ‘)-’, with the Klein-Gordon divisor 
given by 

dwuw(a) = $(gwpguu - gwUgup)  + 2m2 ( g  8 ap - g U p 8  a“ + g p “ a v 8  - g P p a y  a“) 

2 = +;u(x )gFKgyT hK,(a)4P“(x 1. 

1 

- 
2Am 

(2.18) 

If the field is assume a priori antisymmetric, then the symmetric terms in both equations 
(2.16) and (2.18) vanish. However, this does not alter the Wightman theory since the 
symmetric dropped in d(a) is proportional to (0 + m ’), and (0 + m 2, W(x - y ) = 0, 
where W(x - y )  is the scalar two point Wightman function. The Green function may be 
generalized to a one-parameter family dPwp(a, a)(O + m ’)-’, where 

2m 
dfiuv(a, a) = ~ ( g ~ ~ ‘ p g u u - g ~ ~ g u p ) + ~ ( g w u ~ a p  - g w p 8 a “ + g ~ u a y a p  -gwpaYau),  (2.19) 

and cy is any real number. Now the inverse of dpwp(a, a)  becomes 



1736 S C Lim 

which is non-local except for a = 1.  Therefore only the case a = 1 is considered for the 
construction of Markov field. Then the two-point Wightman function is 

WSVW (X - y )  = dpvw(a) W(X - y ) .  (2.20) 

The relativistic one-particle space A can be defined as the completion of the space of 
real antisymmetric tensor test function space 9(R3) with respect to the inner product, 

v, g)A = z I I fpv<x> WfiVW(X - Y )g,(y) dx dY (2.21) 

where fpv (x ) ,  g,(y) E Y(R3) ,  and fpv +fvp = 0, and such that the norm 

11fIk = 2[llfl1'1/2+ 2m-' lldivfIl:pl< 00 (2.22) 

where div f = Z: = 8fpv. 
In order to obtain the correct Schwinger function one can either continue to pure 

imaginary time the Wightman function of the tensor fields +ij  with (L4j = i+'j; or one 
can use the following matrix transformation: 

Sijmn (X - Y 1 = AipAjyAmpAwWpvW b - y ,  i(Xo-Yo)) 
= [(ai,aj, -si,sjm)+2m-2(simajan -ainajam +ajmaia, -sj,,aia,)]s(x - y) .  

(2.23) 

Sijm, is positive definite in the antisymmetric subspace and one can construct the 
Euclidean one-particle space X in the usual manner. The norm in X is given by 

IlflI$= 2[IIfII21 +m-2 I I d i v f I I ~ l ~ < ~ ,  (2.24) 

with divf = Zf=l aif i (x)  and fij +hi = 0, f i j  E Y(R4). This norm is clearly translational 
invariant. If R E S0(4), then div[Rf(R-'x)] = divf(R-'x). This, together with the fact 
that the Sobolev norm (I. . . I ( - 1  is invariant under S0(4), enables one to conclude that the 
induced action on X by ISO(4) is unitary. For a unitary representation T of ISO(4). 

(2.25) 

Now we can define a Euclidean tensor field 9 as the generalized Gaussian random 
tensor field over X with mean zero and covariance given by E [ q ( f ) q ( g ) ]  = ( f ,  g)%. The 
analogues of theorems 1-4 hold for the Euclidean tensor field 9. The proofs are quite 
similar (Lim 1975) so we shall omit them except by noting that the inverse of Sijm, is a 
local differential operator 

7(a, R)fi,.(x).r-'(a, R )  = RiiJ?jjFh,jt(R-l(~ - a ) ) .  

(s.. limn I-' = -;(-A + m ')(si,aj, - sinaim) -is, aidm - ajm aia, + si, aja, - ai, ajam) (2.26) 

which guarantees the Markov property of 9; and the reflection property holds because 

dp)qi,7-'(p) = (-1)'i4+'f4qij(fp) = qij(f) (2.27) 

for all f E Xo. Thus again we have an example of spin- 1 massive Euclidean tensor field 
which exactly fits into the probabilistic framework of Nelson. 

2.3. Euclidean vector meson field in R, gauges 

Now we shall consider a theory of vector mesons which differs considerably from those 
in 00 2.1 and 2.2. In the renormalizable theory of vector mesons (Fradkin and Tyutin 
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1974) it is usual to employ the following free propagator (in momentum space): 

(2.28) 

with one parameter family of covariant R, gauges, where 6 is a real positive number. 
This propagator falls off like p 2  as in the scalar theory. Thus one has achieved 
renormalizability by the method of regularization, at the expense of introducing 
unphysical (or ghost) states. In the relativistic theory, the Gupta-Bleuler formalism 
using indefinite metric Hilbert space has to be used. The scalar ghosts have to be 
eliminated by imposing a subsidiary condition on the physical states. 

It is interesting to note that in the Euclidean region we get a positive definite 
two-point Schwinger function (in momentum space) 

Sij(P) = ( p 2 +  m2)-'[Sij -r(p2)pipj(p2+r(p2)m2)-'1 (2.29) 

which is obtained by matrix transformation A,,AjySij(P), and the generalization of 6 to 
((p'), a positive measurable function. In the limit &+oo we get the Euclidean 
propagator for the Proca field. One can now define a Euclidean vector field 8 in the 
usual manner with mean zero and covariance in terms of Si,. 6 satisfies the following 
theorems. 

Theorem 5. 8 is Markovian provided l-'(p2) is a polynomial in p 2 ,  

Proof. Note that Sij has an inverse 

SG1=(pz+m2)Si, + ( 6 - ' ( p 2 ) -  l)pipj, 

which is local if ,$-'(p2) is a polynomial in p 2 .  Then the rest of the proof follows from 
Nelson's argument. 

We remark that even though Sij with r = O  (corresponding to Landau or transverse 
gauge) is positive semi-definite, it is now singular and cannot be inverted. Even if we 
restrict the physical space to the subspace of distributions satisfying XI difi(x) = 0, one 
still cannot show that it is Markovian in the sense of Nelson. This differs from the 
Euclidean electromagnetic potential, which is Markovian in Landau gauge (Lim 1975 
or the following paper). 

Theorem 6. 6 does not satisfy the reflection property. 

Proof. The proof is simple. We just need to show that the reflection property does not 
hold for a certain class of test functions. The 4-4 component of the Euclidean 
propagator contains the term p i [ @ ' +  m2)(p2 +r(p2)m2]-' which allows test functions 
localized at the hyperplane x4 = 0 of the form f i ( x )  0 6(x4) with f4 f 0 andfi E 9'(R3). 
For such a test function we have 
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In the present case the Euclidean propagator is less singular than that of the Euclidean 
Proca field which contains 4-4 components p:m-2(p2 + m2)-’,  thus ruling out test 
functions localized at the hyperplane x4 = 0, of the form f4 0 6(x2 ) ,  and ensuring the 
reflection property. The effect of the reflection property may be considered as to 
prevent the theory from being too regular in its ultraviolet behaviour. As can be seen in 
Nelson’s theory, the reflection property excludes scalar boson fields with covariance 
functions such as (-A+ m‘)“, n > 1, which are regularized propagators without 
ultraviolet divergences. Actually such fields give rise to indefinite metric Hilbert spaces 
with ghost states (or non-local theories without ghost states), hence do not form 
Wightman theories. Furthermore, the failure of the Euclidean vector field 8 to satisfy 
the reflection property implies that the free Hamiltonian is not self-adjoint and the 
analogues of theorem 3 and theorem 4 do not hold in this case. However, self- 
adjointness of the Hamiltonian can be achieved if we restrict to physical Hilbert space 
with positive metric. Therefore we conclude that the Markov property (assuming other 
conditions of Nelson are satisfied) is not enough to guarantee that a Euclidean field will 
lead to a Wightman field; the relection property must also be satisfied. 

3. Euclidean massive spin-2 field 

The Euclidean Markov tensor field for massive spin-2 particles can be constructed 
similarly to the spin-1 case. In the relativistic theory, a massive spin-2 particle can be 
described by a rank-two tensor field 4,” which satisfies the following equations: 

(0+m2)cp””(x)  = 0 

cp (x ) - cp ”, (x ) = 0 

c p Z ( X )  = 0 
a,cpp”(x) = 0. 

In the Takahashi-Umezawa formalism all these equations can be combined into one 
matrix equation, which in its most general form (Bhargawa and Watanabe 1966) is 
given by 

A,,(a)cpP”(X) = 0, (3.52) 

where 

and p = $(3a2+2a + l), y = a  +2/3 and 6 # 0 are real numbers. The Lagrangian 
density is 

(3.6) 3 = - c p ~ y ( ~ ) g M p g ” “  ApKT (a)+ KT (XI. 

Notice that .=%‘is not unique; it contains two real parameters (Y and 6. Equation (3.5) can 
be reduced to equations (3.1)-(3.4) by a finite number of differentiations and algebraic 
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operations. This can be carried out by using Klein-Gordon divisor 

dyYpr(d) + dr”w(O + m ’) (3.7) 
dS”(a)(U+ m2) are contact terms and are parameter-dependent; they can be made to 
vanish by a suitable choice of parameters with CY = -1 and S = 0. The two-point 
Wightman function does not depend on the contact term and is given by 

(3.8) ( X  - y )  = dYuP”(a) W ( X  - y ) ,  W P V  

which is positive semi-definite and one can construct the relativistic one-particle space 
and Fock space in the usual manner. 

To get the correct two-point Schwinger function, one should apply a slightly 
different matrix transformation on W””w(x - y ) .  For if we apply the same matrix 
transformation as before, then 

Skmn(X - Y >  = AipAjuAmpAnoWpuw (x-Y, i ( X 0 - Y o ) )  
1 - _  - 2(dimdjn + dindjm -5dijdmn )s(x - Y )  

where 

d . . =  &..-m-’a a. 
11 11 1 I ’  

Sbmn is not positive semi-definite since it contains a term -&SljSmn associated with the 
trace (Sijmn is not traceless), which contributes a negative norm to the Schwinger 
function. In order to obtain a positive semi-definite Schwinger function, we must make 
S:jmn traceless. This can be achieved by the foilowing matrix transformation: 

s i jmn(x  - y >  = (A~,A,, ++Sijgwu) ( A m p A z u  + + S m n g p )  wwUp”(x-~, i(xo-yo)). (3.9) 
Since the relativistic tensor field is traceless (equation (3.3)), the extra term $6ijgp, 
contributes only ultralocal terms to the Schwinger function, consisting of a S function 
and its derivatives. It can be shown by direct computation that X l  Sirmn = 0 and Siim, is 
positive semi-definite. 

The Euclidean one-particle space X can be taken as the completion of the 
symmetric tensor test-function space 9’10(R4) with respect to the inner product 

(3.10) 

The Euclidean massive spin-2 field @ is defined as the generalized random tensor 
Gaussian field over X with mean zero and covariance E [ @ ( f ) @ ( g ) ]  = ( f ,  g)%. The 
Euclidean tensor field @ is not divergenceless; just like the Euclidean Proca field, 
X l  ai@., is ultralocal. The analogues of theorems 1-4 hold for @; the proofs are similar 
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to that for the scalar field so we shall omit them. Note that 
A = (Ai,Ai, +$Gijg,,)(A,,,fi, +;iG,,g,) is a non-singular mat_rix, hence it can be 
inverted. Then the Fourier transform of the Schwinger function, S ( p )  = A W(p,  ip,) has 
a local inverse s - ' ( p )  = W ' ( p ,  ipo)A-' = A(p, ipo)A-', which ensures the Markovicity 
of @. 

1 

4. Conclusions 

We have constructed Euclidean Markov fields with spin S C 2, starting from the local 
Lagrangian formulation of Takahashi and Umezawa. The main advantage of this 
method is that the Markov property follows immediately from the existence of a local 
Lagrangian density. It appears that all the algebraic properties (such as symmetry and 
tracelessness) of the relativistic fields need to be preserved in the Euclidean region. 
However, the differential condition, i.e. divergenceless of the relativistic fields, is not 
preserved. In fact, the divergences of Euclidean vector and tensor fields are all 
ultralocal. It is interesting to note that a field which requires the introduction of 
indefinite metric Hilbert space in the Minkowski region can have a perfectly proper 
Euclidean theory with a positive metric Hilbert space, except that the reflection 
property is violated. This implies that there is a close connection between the 
indefiniteness of the Hilbert space for a relativistic field and the violation of the 
reflection property for the corresponding Euclidean Markov field. We shall give more 
examples to illustrate this point in our next paper which deals with massless fields. 

The possibility of extending the above method to Euclidean tensor fields with spin 
S a 3  is still under investigation. We expect to face certain complications in such a 
generalization because the arbitrary parameters present in the local Lagrangian density 
increase as the value of spin increases, and it would be difficult to get a consistent set of 
parameters. In our preliminary study there is an indication that for a spin-3 tensor field 
the Umezawa-Takahashi formulation does not work and auxiliary fields need to be 
introduced. However, this does not imply that Euclidean spin-3 tensor field is not 
Markovian, except that the proof of Markovicity may be more involved. We hope to 
discuss these points in a future paper. 
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